DEVELOPMENT AND VALIDATION OF A SUITE OF MULTIPLEXED PCR ASSAYS FOR THE DETECTION AND DIFFERENTIATION OF NON-TUBERCULOUS MYCOBACTERIA

Scott Cowden, Clayton Thomas, Emily Lute, Jerod Davidson, James Grantham, Jamie Nutt and Steve Kleiboeker Eurofins Viracor, Lenexa, Kansas, United States

INTRODUCTION

Current Nontuberculous mycobacteria (NTM) diagnostics rely on clinical presentation and a combination of testing modalities including radiology and culture. NTM cultures often have extended turnaround times due to the slow growth rates of these organisms. Additionally, discriminating between members of the Mycobacterium abscessus complex (MAbC) is important due to increasing drug resistance. Therapy to resolve NTM infections typically involves a long treatment course. PCR-based NTM diagnostics can provide a means for clinicians to attain a diagnosis and start the most appropriate therapy sooner than relying on traditional culture methods.

The primary objective of this study was to validate the ability of several in-house designed qPCR assays to detect nucleic acid originating from clinically significant members of the Mycobacterium genus.

Here we describe the development, validation and performance characteristics of a multiplexed, quantitative qPCR assay for MAbC, as well as two multiplexed, qualitative qPCR assays targeting members of the *Mycobacterium avium* complex (MAC) and members of the *Mycobacterium* genus (broad-range Mycobacterium or BR-Myco).

MATERIALS AND METHODS

Multiple qPCR primers and probes were designed to target conserved genes for organisms belonging to the MAbC and MAC. MAbC target assays were designed to specifically detect and quantify the three subspecies associated with this taxonomic group. MAC target assays were designed to qualitatively detect select organisms belonging to this complex. BR-Myco oligos targeted the *Mycobacterium* internal transcribed spacer (ITS) sequence and were optimized to detect clinically significant members of the genus outside of the MAbC and MAC. The most promising candidate assays were then optimized and multiplexed within each complex and further characterized with linearized plasmid containing the various target sequences.

The assays demonstrating the best preliminary efficiency, precision, and sensitivity were then validated in accordance with guidelines recommended by the New York State Department of Health, College of American Pathologists (CAP), and Clinical and Laboratory Standards Institute (CLSI) to establish the analytical specificity, linearity and dynamic range, analytical sensitivity (limit of detection and lower limit of quantification), intra- and inter-assay precision (reproducibility), and analytical accuracy of the test method¹⁻⁷.

BAL and sputum samples were pre-processed by bead-beating using the MagMAX[™] CORE Mechanical Lysis Module. DNA was then extracted from samples using the MagMAX[™] DNA Multi-Sample Ultra 2.0 Kit and KingFisher[™] Flex system (Thermo Fisher). Amplification and detection were performed using TaqMan[™] Fast Advanced Master Mix (Thermo Fisher) and the Applied Biosystems[™] 7500 Fast instrument. Quantification was performed using linearized plasmid standards containing assay target sequences and results were evaluated in copies/mL for the quantitative MAbC assay and C_{T} s for the qualitative MAC and BR-Myco assays.

References:

- 1. Approval of Microbiology Nucleic Acid Amplification Assays. New York State Department of Health. 2011.
- 2. Basic Method Validation, 4th Edition. JO. Westgard, Ph.D. Westgard QC, Inc. Madison, WI. 2020.
- 3. Burd EM. Validation of laboratory-developed molecular assays for infectious diseases. Clin Microbiol. Rev. 2010; 23(3):550-76. 4. EP17-A2. Vol 32 No. 8. Evaluation of Detection Capability for Clinical Laboratory Measurement Procedures; Approved Guideline, Second Edition. Clinical and Laboratory Standards Institute. Wayne, PA. 2012.
- 5. EP21. Estimation of Total Analytical Error for Quantitative Medical Laboratory Measurement Procedures; Approved Guideline. Clinical and Laboratory Standards Institute. Wayne, PA. 2016.
- 6. MM03. Molecular Diagnostics Methods for Infectious Diseases; Approved Guideline, Third Edition. Clinical and Laboratory Standards Institute. Wayne, PA. 2015.
- 7. MM06-A2, Vol. 30 No.22. Quantitative Molecular Methods for Infectious Diseases; Approved Guideline, Second Edition. Clinical and Laboratory Standards Institute. Wayne, PA. 2010.
- 8. Akwani WC, van Vliet AHM, Joel JO, et al. (2022) The Use of Comparative Genomic Analysis for the Development of Subspecies-Specific PCR Assays for *Mycobacterium abscessus*. Front. Cell. Infect. Microbio. 12:816615.
- 9. Sarro YS, Butzler MA, Sanogo F, et al. Development and clinical evaluation of a new multiplex PCR assay for a simultaneous diagnosis of tuberculous and nontuberculous mycobacteria. EBioMedicine 70 (2021) 103527.
- 10. Sevilla IA, Molina E, Elguezabal N, et al. Detection of mycobacteria, Mycobacterium avium subspecies, and Mycobacterium tuberculosis complex by a novel tetraplex real-time PCR assay. 2015. J Clin Microbiol 53:930-940.

RESULTS

Table 1. MAbC Analytical accuracy data

	MAbC qPCR Assay				
Sample ID	Mabs-abs ¹	Mabs-boll ¹	Mabs-mass ¹	Negatives ²	
<i>M. abscessus</i> subsp.					
<i>abscessus</i> (n=48)	48	0	0	121	
<i>bolletii</i> (n=48)	0	48	0	121	
<i>massiliense</i> (n=48)	0	0	48	121	
Unspiked Samples (n=50)	0	0	0	50	

¹Mabs-abs = *M. abscessus* subsp. *abscessus*, Mabs-boll = *M. abscessus* subsp. *bolletii*, and Mabsmass = *M. abscessus* subsp. *massiliense* ²Negative samples are defined as samples spiked with non-MAbC NTM species

Table 3. MAC Analytical accuracy data

Negatives ¹	
170	
175	
170	
179	
179	
50	

Sample ID M. abscessus absce

massill M. avium sub

> paratuber homi sylv

M. intracellula

subsp. *chi* M. colombien

M. chelonae

M. fortuitum

M. gordonae

- M. kansasii (
- M. malmoens
- M. scrofulace
- M. simiae (n=

M. terrae (n= *M. xenopi* (n=

Unspiked Samples (n=50)

¹Negative samples are defined as samples spiked with non-MAC NTM species

- **Figure 1.** Linear regression of full-process sample preparations in BAL matrix resulted in the individual assay target regression metrics described when calculated in log_{10} copies/mL.
- Table 1. Analytical accuracy was demonstrated for MAbC qPCR by challenging the assay with a total of 144 BAL samples spiked with one of the three subspecies belonging to the MAb complex (abscessus, bolletii, or massiliense) as well as 121 BAL samples spiked with non-MAbC mycobacteria and 50 unspiked BAL samples. All samples were correctly identified.
- **Table 2.** Analytical accuracy was demonstrated for MAC qPCR by challenging the assay with a total of 86 BAL samples spiked with one of seven species / sub-species belonging to the MAC as well as 179 BAL samples spiked with non-MAC mycobacteria and 50 unspiked BAL samples. All samples were correctly identified.
- Table 3. Analytical accuracy was demonstrated for the BR-Myco qPCR by challenging the assay with a total of 265 BAL samples spiked with various NTM species (144 MAbC NTMs, 86 MAC NTMs, 27 *M. chelonae*, and 8 different non-MAbC / non-MAC Mycobacterium species) as well as 50 unspiked BAL samples. All samples were correctly identified.

RESULTS

Table 4. MAbC qPCR LoD and LLoQ¹ for *M. abscessus* subsp. *abscessus*

Probit L	oD Prediction:	: 161	copies/mL		LLoQ:	750	copies/mL
Expected copies/mL	Observed copies/mL	Expected log ₁₀ copies/mL	Observed log ₁₀ copies/mL	Standard deviation	Bias	% Detection	Total analytical error
750	776	2.88	2.82	0.25	0.06	100%	0.6
150	150	2.18	1.98	0.46	0.19	100%	1.1
100	74	2.00	1.69	0.42	0.31	95%	1.2
50	105	1.70	1.75	0.51	0.05	50%	1.1
5	33	0.70	1.51	0.00	0.82	10%	0.8

¹LLoQ – Lower Limit of Quantification

• The MAbC assay limit of detection (LoD₉₅) for *M. abscessus* subsp. *abscessus* predicted by probit regression was 161 copies/mL (95% confidence interval of 101 to 350 copies/mL) in BAL

Table 5. MAC qPCR LoD Confirmation

Organism	Observed copies/mL	Expected log ₁₀ copies/mL	Observed log ₁₀ copies/mL	Standard deviation	% Detection
<i>M. avium</i> subsp. <i>avium</i>	122	2.10	1.96	0.36	100%
M. intracellulare	167	2.40	2.17	0.24	100%
M. colombiense	351	2.40	2.51	0.19	100%

• The MAC assay limit of detection (LoD) was assessed by a range-finding experiment followed by confirmation of detection (≥95%) at discrete concentrations for each target in 20 spiked BAL replicates

Medium Samples

41,024

%CV 8.05% 24.55%

Mean 53,109 28,718

%CV 12.71% 18.49%

Mean 41,666 24,019

%CV 4.88% 20.50%

46,973

3,301

6,751

2,031

Mean

SD

SD

Mean

Mabs-abs Mabs-boll

copies/mL copies/mL

28,958

7,110

5,309

4,925

27,580

:48)	48	0	repriedteel				
:48)	48	0	Table 6. MAbC Intra- a				
:48)	48	0					
						High Samp	les
:27)	27	0		Data sot		Mabs-abs ¹	Mabs-bo
=1)	1	0		Dala Sel		copies/mL	copies/m
) =1)	1	0		Intra_assav	Mean	412,030	287,185
	1	0		day 1	SD	52,846	38,793
- I)	<u> </u>	0		,	%CV	12.83%	13.51%
)	27	0		I	Mean	441,219	346,506
=2)	2	0		Intra-assay day 2	SD	50,830	53,966
$\mathbf{}$	27	0			%CV	11.52%	15.57%
/	21	0		latra anany	Mean	394,092	234,908
	27	0		Intra-assay	SD	51,358	44,316
	1	0			%CV	13.03%	18.87%
	1	0		Intra accav	Mean	430,111	275,463
	1	0		intra-assay day 4	SD	49,109	13,802
	<u> </u>	0		,	%CV	11.42%	5.01%
	1	0			Mean	419,363	286,016
	1	0		ASSAY	SD	49,275	54,924
	1	0	L		%CV	11.75%	19.20%
	<u> </u>	0		¹ Mabs-ab	s = <i>M.</i>	abscessus	subsp.
	1	0			-		
	1	0			າC ຊຸ	ssav nre	Inizina

and inter-assay precision

Mabs-mass²

copies/mL

211,318

11,688

5.53%

224,495

22,645

10.09%

199,418

16,756

8.40%

206,516

Data set

Intra-assay

Intra-assay SD

day 1

day 2

ntra-assay

day 3

Intra-assay SD 2,709 29,099 5,095 day 4 14.09% **%CV** 5.77% 18.47% 210,437 **Mean** 45,693 27,319 INTER-SD 5,473 21,089 6,231 ASSAY **%CV** 13.64% 20.03% 10.02% abscessus. Mabs-boll = M. abscessus subsp. bolletii, and Mabs-mass = M. abscessus subsp. massiliense MAbC assay precision observed for full-process samples are shown with intra-assay copies/mL %CVs results ranging from 4.88 to 48.62% across all concentrations tested and inter-assay %CVs ranging from 10.02% to 40.73% observed across all concentrations tested. MAC assay intra- assay precision (data not shown) for C_T %CVs ranged from 0.16%-4.26% across all

concentrations tested and inter-assay precision %CVs ranged from 0.29%-2.97%. BR-Myco C_{T} %CVs intra- assay precision (data not shown) for C_{T} %CVs ranged from 0.14%-3.74% across all concentrations tested and inter-assay precision %CVs ranged from 0.65%-2.85%.

CONCLUSIONS

Traditional mycobacterial culture methods can have extended turn-around times and poor sensitivity relative to molecular diagnostics. The Viracor in-house designed and validated PCRbased NTM diagnostic suite described here allows clinicians to attain a prospective diagnosis and start an appropriate therapy as soon as possible. While culture methods still have a place within the mycobacterial diagnostic space (differentiation / identification and resistance / susceptibility profiles), the assays described here can effectively reduce the time-to-therapy and potentially improve health outcomes for patients diagnosed with pulmonary NTM.

Table 2. BR-Myco Analytical accuracy data

	BR-Myco qPCR Assay				
	Positives	Negatives			
s subsp.					
<i>essus</i> (n=48)	48	0			
oolletii (n=48)	48	0			
<i>iense</i> (n=48)	48	0			
sp.					
a <i>vium</i> (n=27)	27	0			
<i>culosis</i> (n=1)	1	0			
<i>nissuis</i> (n=1)	1	0			
<i>aticum</i> (n=1)	1	0			
are (n=27)	27	0			
<i>imaera</i> (n=2)	2	0			
se (n=27)	27	0			
n=27)	27	0			
n=1)	1	0			
(n=1)	1	0			
n=1)	1	0			
e (n=1)	1	0			
<i>um</i> (n=1)	1	0			
1)	1	0			
1)	1	0			
:1)	1	0			
amples (n=50)	0	50			

	Low Samples				
abs-mass opies/mL	Data set		Mabs-abs copies/mL	Mabs-boll copies/mL	Mabs-mass copies/mL
17,570		Mean	4,898	3,603	1,985
856	Intra-assay day 1	SD	1,081	623	816
4.87%	dayı	%CV	22.07%	17.29%	41.12%
22,830		Mean	5,869	3,004	1,617
2,410	Intra-assay day 2	SD	1,639	1,067	549
10.55%	uay z	%CV	27.92%	35.51%	33.93%
17,931		Mean	4,707	1,660	1,663
3,030	Intra-assay	SD	696	174	808
16.90%	uay o	%CV	14.78%	10.51%	48.62%
21,302		Mean	5,528	2,417	1,277
4,589	Intra-assay day 4	SD	971	865	512
21,82%	uay +	%CV	17.57%	35.77%	40.09%
19,841		Mean	5,251	2,609	1,636
3,530	INTER- ASSAY	SD	1,136	995	666
17.79%	,	%CV	21.64%	38.13%	40.73%